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Directed polymers in a random medium: l /d  expansion and the 
n-tree approximation 
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+ Service de Physique ThioriqueP de Saclay, 91191 Cif-sur-Yvette Cedex, France 
$ Department of Physics, Edinburgh University, Edinburgh EH9 352, U K  

Received 25 October 1989 

Abstract. We develop a method which allows one to obtain l / d  expansions for the problem 
of directed polymers in a random medium. Using this method, we expand thermal properties 
(such as the free energy, the specific heat), the overlaps and the fluctuations of the transverse 
displacement. Our results are consistent with the existence of a finite upper critical 
dimension above which the low-temperature phase is mean field like, i.e. characterised by 
a broad distribution of overlaps (broken replica symmetry) and transverse fluctuations 
which scale as the length of the polymer. 

1. Introduction 

The problem of directed polymers in a random medium can be formulated in its 
simplest lattice version as follows (Kardar 1987, Zhang 1987, Kardar and Zhang 1987, 
Cook and Derrida 1989b). For each bond, ij ,  of some regular lattice one chooses a 
random energy, E,,, according to a given probability distribution P ( E ~ ) .  One then 
considers all directed walks of length L starting at a fixed origin on the lattice. A 
directed walk is, by definition, one stretched along a single longitudinal direction, with 
fluctuations in the transverse directions only. In this paper we shall consider walks 
on a d-dimensional hypercubic lattice, directed along the (1, 1 , .  . . , 1) direction of the 
lattice. This means that at each step one coordinate must increase by one, so that if 
the walks commence at r = ( x l , .  . . , x d )  they can end at any point r'= 
(xI + n,, . . . , xd + n d )  with n ,  +. . .+ nd = L. The energy, E,, of a walk, w, is defined as 

E, = E,,  (1) 
rJG w 

where the summation runs over all the bonds, i j ,  visited by the walk w. 

overlaps and geometrical properties. 
Three kinds of properties can be studied for such a system: thermal properties, 

( i )  Thermal properties. These can be obtained from the partition function Z: 

In (2) the sum includes all the directed walks of length L starting from the point r, 
and T is the temperature. From the knowledge of Z, one can calculate the free energy, 
the energy and the specific heat as functions of the temperature and then study the 
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phase diagram. In the thermodynamic limit ( L + a ) ,  one can observe phase transitions 
between a high-temperature phase where the effect of disorder is weak and a low- 
temperature phase very similar to a spin-glass phase. 

At zero temperature, the problem becomes an optimisation problem: the problem 
of finding the walk of lowest energy. In addition to the value of the ground-state 
energy, one can study its fluctuations (Zhang 1987, Kardar and Zhang 1987, Huse et 
a1 1985) which are characterised by an exponent w which depends on the dimension 
of the lattice 

where ( ) means an average over disorder. 
(ii) Overlaps. As one can think of the low-temperature phase as a phase where the 

directed walks get trapped in deep valleys, it is useful, in order to study the statistical 
properties of the landscape, to define the overlap between two walks and the probability 
distribution of these overlaps (Derrida and Spohn 1988, Cook and Derrida 1989b). 
This overlap is defined by the fraction of their length that the two walks spend together. 

(iii) Geometrical properties. The effect of disorder is to influence the transverse 
fluctuations of the directed walks. These can be characterised by an exponent v: 

where R( w )  is the projection of the walk on the transverse directions. 
The problem of directed polymers in a random medium has close analogies with 

two other problems in statistical mechanics: growth models and spin glasses. 
The link with models of growing surfaces (Eden model or ballistic deposition) has 

been discussed by Kardar and Zhang (1987) and McKane and Moore (1988). They 
showed that the Kardar-Parisi-Zhang equation (Kardar er a1 1986) for growth models 
could be interpreted as a continuous version of the directed polymer problem. This 
mapping allows one to relate the exponents w and v defined by (3) and (4) to the 
critical exponents characterising the fluctuations and roughness of the growing interface 
(Krug and Spohn 1988, Wolf and Kertksz 1987, Kim and Kosterlitz 1989). 

The link with spin glasses has been made in the mean-field limit (Derrida and 
Spohn 1988). It was shown in the mean-field theory of the directed polymer problem 
that the low-temperature phase is characterised by a broad distribution of overlaps as 
in Parisi’s mean-field theory of spin glasses (Parisi 1980a, b, Mezard et a1 1987). For 
spin glasses, the relevance of the Parisi solution in finite dimension has been a topic 
of controversy for the past decade (Sourlas 1986, Huse and Fisher 1987, 1988). One 
difficulty in trying to extend the Parisi solution to finite-dimensional systems is that 
the mean-field free energy is sufficiently complicated to make expansions around it 
technically very difficult (Bray and Moore 1979, de Dominicis and Kondor 1985). As 
the analytic expression for the free energy of the low-temperature phase is much simpler 
in the polymer problem, it should be an easier system in which to test the validity of 
the Parisi approach in finite-dimensional systems (Cook and Derrida 1989a). 

Let us now summarise what is already known about the .problem of directed 
polymers in a random medium. 

A phase transition is known to exist for d > 2 +  1 (two transverse plus one longi- 
tudinal directions) (Imbrie and Spencer 1988). Above the transition temperature, Tc, 
the thermal properties take simple forms, the annealed and quenched free energies 
being the same. In the mean-field limit (Derrida and Spohn 1988) one can calculate 
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the transition temperature, whereas for finite-dimensional systems only bounds have 
been obtained (Cook and Derrida 1989b). 

A lot of work has been done on determining the exponents w and v (see (3) ,  (4)) 
at low temperature. In 1 + 1 dimensions the problem can be mapped on to a Burgers 
equation and a renormalisation analysis gives w = f and v = 3 (Forster er a1 1977, Huse 
er a1 1985). Little is known analytically about the exponents in higher dimension. A 
recent renormalisation group calculation ( Halpin-Healy 1989, Nattermann and Renz 
1988) has indicated a finite upper critical dimension d ,  = 4 +  1. However, numerical 
simulations carried out by evaluating the surface scaling exponents for growth models 
have led to different conjectures. Wolf and Kertisz (1987) suggest w = 1/(2d - 1) and 
v = d / ( 2 d - l )  whilst Kim and Kosterlitz (1989) propose w = l / ( d + l )  and v =  
( d  +2)/2(d + 1) both giving no finite upper critical dimension. Recent simulations by 
Renz (1989) are intermediate between these two conjectures. 

It is currently not established whether the exponents w and v vary continuously 
with dimension up to d = a3 or whether they take their mean-field values, w = 0 and 
v = +, above a certain finite dimension d, .  In all cases, one expects these exponents 
to be related by a simple relation w + 1 = 2 v  (Krug 1987). 

Having summarised the problem and some of the results known already, let us 
now outline the rest of the paper and the new results we shall present. Firstly we shall 
discuss the mean-field version of the problem, recalling the methods of solution and 
the main results. Then, in section 3 we present the l / d  expansion method, first 
introduced in a previous work (Cook and Derrida 1989a), which is based on a series 
of approximations which we call ‘n-tree’ approximations. This will allow us to deter- 
mine the l / d  expansion of the free energy and of the ground-state energy when the 
distribution P ( E )  of energies is exponential. We extend the method to obtain the 
fluctuations of the transverse displacement in section 4 and we calculate the overlap 
in section 5. In section 6 we discuss how the results would be modified by considering 
other distributions of disorder. Lastly in section 7 we test our expansion method (based 
on the n-tree approximation) on several problems which can be solved by alternative 
approaches. 

2. The tree problem 

A mean-field version of the problem of directed polymers in a random medium can 
be solved exactly (Derrida and Spohn 1988), for any distribution of disorder, by taking 
the regular lattice to be a branch of a tree (see figure 1). This problem can be solved 
by several methods: an analogy with travelling waves, a replica approach or by using 
results known on the G R E M  (Derrida and Gardner 1986). In this section we shall 
outline the travelling wave approach and present the main mean-field results. The 
replica approach is described in appendix 1. 

0 
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Consider the branch of a tree, with coordination number, K + 1 (figure 1). For 
each bond ij of the lattice one chooses a random energy, E ~ , ,  according to a given 
distribution P ( E , , ) .  If Z,(O) is the partition function of the K directed walks of length 
L starting at 0, defined by (1) and (2),  one can write a recursion relation connecting 
ZL and ZL+,: 

where ZL(i) is the partition function of the walks in the ith branch and E , , ~  is the 
energy of the bond connecting the origin to the ith branch. The energies E~ are 
independent random variables and so the partition function itself is random. It is 
therefore natural to consider a generating function of Z,, H,(x) defined by 

HL(x)  = (exp[-exp(-x/ T)ZL1). (6) 

Using HL(x)  the recursion (5) takes the simple form 

where we have used the fact that . . . , .sOK and ZL(l) ,  . . . , Z,(K) are independent 
random variables. Notice that (7) is independent of temperature. The temperature 
dependence only remains in the initial condition (8). 

H,,(x) = exp[-exp(-x/T)I. (8) 

It can easily be seen from (6) and (8) that 

Hence HL(x)  has the shape of a wavefront. Equation ( 7 )  is a travelling wave equation, 
belonging to a class of nonlinear equations of the diffusion-reaction type, and has 
properties similar to those of the KPP (Kolmogorov-Petrovsky-Piscounov) equation 
(Bramson 1983) 

Finding, for large L, the solution of the travelling wave equation (7) or (10) is not 
simple. However, it has been shown by Hammersley (1974) for (7) and by Bramson 
(1983) for ( lo) ,  that for large L, the solutions of these equations become travelling 
waves, W, which move with velocity U 

H,(x)= W(x-UL-c(L)) (11) 

where c ( L ) / L + O  as L + a .  
In general the exact form of W is not known but the analytic expression of the 

velocity is easy to obtain. The velocity of the wave, U, depends upon the initial condition. 
For an initial condition of the form 
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with H , ( x )  a monotonic function, it has been shown (Hammersley 1974, Bramson 
1983) that the velocity is given by 

if Y Y m i n  

if Y 3 Y m i n  

where 

and ymin is the value of y that minimises the velocity, i.e. 

(G,( y)  has in general a single minimum: this could be shown by using the fact that 
y G , ( y )  is always a convex function of y ) .  From (13) we see that the exponential 
decay, y, of the initial condition controls the velocity of the travelling waves. If y < ymin 
the velocity varies continuously with y, whereas if y 3 ymin the velocity remains fixed 
at its minimal value, umin .  

These properties of the travelling waves (( 11)-( 14)) can be mapped onto properties 
of the partition function. Because of (6), the distribution of log 2, is concentrated 
near the place where the wavefront is located. This implies from (11) that - U  can be 
identified with the free energy per unit length of the sytem, so we have 

where 

T c Y m i n  = 1. (16) 
This result is the same as that obtained by the replica method (equation (A1.12) of 
appendix 1). From (15) one sees that the entropy vanishes in the whole of the 
low-temperature phase, so that the system is completely frozen. One can conclude 
from (1 1) that the width of the probability distribution of log ZL must be of order one, 
and this means that the energy fluctuation exponent, defined by (3), w = O .  It is not, 
however, possible to obtain an explicit expression for the ground-state energy fluctu- 
ations as this would require the knowledge of the shape of the travelling wave. 

Another set of quantities which are of interest in this problem are the overlaps. If 
one defines q2(w, w’) to be the fraction of their length that two walks w and w’, of 
length L, spend together, one can define the average overlap, (q2) ,  to be 

Similarly one can define the average overlap between m walks, (q,,,). These overlaps 
are analogous to the overlaps which occur in the mean-field spin glass (Parisi 1983, 
Mezard et al 1984). Often it is useful to consider the probability distribution of the 
overlaps, P,  (4). When replica symmetry breaking occurs one expects a many-valley 
landscape, in which the overlaps, q,, will not be self-averaging. P 2 ( q )  will then be a 
non-trivial distribution function, which we define as 
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with similar formulae pertaining for P,,,(q). In appendix 1, a replica approach is used 
to show, along with results (13)-( 16), that the average overlap, (q2) ,  and the distribution 
P 2 ( q )  are given by 

l - T / T ,  T s  T, 
T a  T, 

and 

T s  T, 

for the tree problem (Derrida and Spohn 1988). 
The fact that P2( q )  is not a single delta function for T < T, indicates a free energy 

landscape with a many-valley structure. Two walks lying in the same valley have an 
overlap q2 = 1, whereas walks lying in different valleys have zero overlap. 

To summarise, we have seen in this section that a travelling wave approach can be 
used to solve the mean-field problem of polymers in random media. The main results 
(13)-( 16), (19), (20) for the mean-field limit will provide the basis for the 1/ d expansions 
which we shall now present in sections 3, 4 and 5. 

3. The l / d  expansion and the n-tree approximation 

In this section we present the method of ‘n-tree’ approximations and show how this 
can be used to develop a l / d  expansion for the free energy of the directed polymer 
on a hypercubic lattice (Cook and Derrida 1989a). We use the expansion to derive 
formulae for the free energy, ground-state energy and specific heat in the low- 
temperature phase (equations (42), (46) and (441, respectively) and the transition 
temperature (equation (45)). 

Consider the problem of directed polymers on a hypercubic lattice of dimension 
d. As usual one chooses a random energy, E,,, according to a given probability 
distribution, p (  E ) ,  for each bond ij of the lattice. In this section and in sections 4 and 
5 we shall choose (Dhar 1988) 

P ( E )  = exp(-E) € 3 0 .  (21) 
This choice will make the calculation of several integrals we shall require much simpler. 
The use of other distributions will be discussed in section 6 .  Consider walks of length 
L, directed so that at each step one coordinate increases by one. This means that one 
directs the walks along the (1, 1 , .  . . , 1) direction, so that if the walks commence at 
r = ( x l , .  . . , xd) they can end at any point r’= ( X I  + n, ,  . . . , xd + nd)  with n, +. , .+ nd = 
L. There are d L  directed walks of length L emanating from any given origin. The 
partition function, ZL(r) ,  is defined by (1) and (2) as before. 

One can write the following recursion for Z,( r): 

with 
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where e, are the unit vectors of the lattice in the directions in which a step is allowed, 
and the initial condition is 

Z,( r )  = 1. (23) 

The recursion (22a) is very similar to the recursion (5) which was valid for the tree. 
The main difference is that, in (22a), the Z L ( r + e , )  are correlated. For example 
Z , ( r +  e,) and Z L ( r +  e,) are correlated because they both depend on Z L - , ( r +  e, + e,), 

To cope with these correlations in a systematic way we have developed a series of 
approximations which we call ‘n-tree’ approximations. These become exact in the 
limit n +CO. To obtain the n-tree approximation to the problem, one iterates (22a) n 
times exactly and then neglects the remaining correlations. In other words one takes 
account of the correlations on the first n steps of the lattice exactly and then constructs 
a tree from this motif, by neglecting other correlations. Diagrams of the 1-tree, 2-tree 
and 3-tree are shown for d = 2 in figure 2. 

( c l  d = 2 .  

3.1. The 1-tree approximation 

The first approximation, a 1-tree, neglects all correlations on the right-hand side of 
(22a). This gives the mean-field problem of (5), with K = d, the solution of which has 
been discussed in section 2. If we call the free energy per unit length of the n-tree 
F,( T), then from (13)-(16) we have 

where 

and ymin is given by 

Ymin = 0. 
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We use, as before, (. . .) to denote an average over disorder, so here we have 

(e -yf )=  P ( E )  e-YF ds. (25) I 
For the distribution (21) one sees that 

Gl(Y)  =-log(%). 1 
Y 

If d is large one can expand the free energy given by (24) and (26) in powers of l /d ,  
yielding 

T s  T, 1 1  3 

T a  T, 

and one finds that the transition temperature, T,, is given by 

T , = - = L +  1 9 + - + o( d -4 ) .  
ymin ed e d 2e3d3 

3.2. The 2-tree approximation 

In the 1-tree approximation we have neglected all correlations in (22a). To extend 
the theory beyond the mean-field limit one must consider the correlations neglected 
so far. To start to do this we move to the 2-tree approximation. The 2-tree approxima- 
tion is obtained by iterating ( 2 2 a )  twice to give 

Zr+2(r) = u, ( r )a i ( r+  e , )ZL(r+2ei)  
d 

, = I  

and now neglecting the correlations between the Z, on the R H S  of (29). Again one 
ends up with a tree (see figure 2 ( b ) ) ,  but now it has d + d ( d  - 1)/2 branches rather 
than d branches. The branches are of two types: d branches have an energy which is 
the sum of two random energies E ,  + E / ,  whereas the other d ( d  - 1)/2 branches have 
an effective energy, .seff, given by 

(30) 

The effective energy on these d ( d  - 1)/2 branches depends upon the temperature and 
represents the fact that these branches are composed of two paths. 

As a tree structure still remains the 2-tree can be solved exactly as before (equation 
( 2 4 ) ) .  If one defines 

E eff = - T 1 og [ a, ( r ) a] ( r + e, ) + a, ( r ) a, ( r + e, ) 1. 
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then the free energy per unit length of the 2-tree is given by 

with ymin the solution of y 1 Ym,n = 0. 

The extra factor in (31) appears because when one iterates (29) L times the polymer 
is of length 2L, not L. One sees that ymin now depends upon the temperature, because 
the effective energy on d(d  - 1)/2 of the branches was temperature dependent. T, is 
still given by (16), i.e. is the solution of T, = 1/ ymin( T 

3.3. The 3-tree approximation 

To get successively better approximations to the d-dimensional lattice one can consider 
in turn a 3-tree, 4-tree, etc.. . . For example for the 3-tree 

jzeOc) - 

1 
3Y 

G3( y )  =- l ~ g [ d ( e - " ) ~  + d ( d  - l)(f2( T I Y T ) + i d ( d  - l ) ( d  -2)(f3( T)Yr)] (33a) 

where 

f 2 (  T )  = a14243 + ~ 4 ~ 5 ~ 3  + a 4 ~ 6 ~ 7  (336) 
and 

where ai = exp(-si/ T). 
One can see that fi( T )  and f3( T) are the partition functions associated with the 

directed walks linking the two marked points on diagrams 2 and 3 of figure 3 respec- 
tively. It is clear that as the number of energies that must be averaged over increases 
the problem becomes much harder. So, although the aim would be to proceed to 
successive n-tree approximations, the complexity of the calculations that would be 
involved makes this approach impossible. However, for large dimension the problem 
is tractable. 

f3( T ,  = a l ~ 2 a 7 + a l a 6 a 1 0 + a 4 a 3 a 7 + ~ 4 a 8 a l l  + a5a9a10+aSa12al 1 (33c) 

f 3  

Figure 3. I;  i s  the sum of the weights of all the 
directed walks connecting the two  marked points on 
the diagram i. 
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3.4. The 2-tree for large d 

When we expanded the tree solution for large d, equations ( 2 7 ~ 1 ,  (28), one saw that 
T, was of order l /d .  The key to obtaining the l / d  expansion is to keep in mind that 
for large dimension T, is small, of order l /d ,  and ymin is large, of order d. 

It is the fact that the relevant temperatures are small - l /d  which simplifies the 
situation. To see this, consider (31). One needs to calculate 

( f l (T)yT)=({exp[-(&,+E,) /TI+ex~[-(&3+&4)/TI}YT) (34) 

corresponding to figure 3(a) .  As T is at most of order l / d  in the low-temperature 
phase, the leading contribution to (34) will result from the region in the space of E ~ ,  

E , ,  E ’ ,  where one of the two terms on the R H S  of (34) is much larger than the other. 
One can rewrite (34) as 

(fmYT) = 2(exp(-w))’+ (({exP[-(El+ E d /  7-1 

+~XP[- (E’+ c4)/ T I } y T ) - 2 ( e x ~ ( - ~ ~ ) ) 2 ) .  (35) 

Using (21) one sees that the first term on the R H S  of (35) is 2(y+1)-’, whilst the 
second is only of order Y - ~ .  For example, it is easy to show that at T = 0 the second 
term is -2(3 y +4)(  y + 1)-,( y + 2)-’. Using the rearrangement (35) one can recast 
G2(y)  in the form 

1 
GAY)  = - l o g [ d ’ ( e x p ( - y ~ ) ) ’ + f d ( d  -1) 

2Y 

3.5. The 3-tree for large d 

To see how the high-dimension simplification works in a more complex case, consider 
G,(y) given in (33). This was complicated because one had to evaluate (fi( T ) y T )  and 
( f 3 ( T ) y T ) .  However, when d is large these quantities simplify in the same way as 
( f l (  T ) y T )  in ( 3 5 ) .  Take first ( f 2 (  T ) y T )  defined in (336). As T is small this is dominated 
by cases in which one of the three terms in (336) is much larger than the other two. 
The next largest contribution comes from the situations when either the first pair or 
the last pair are much larger than the other term. Smaller again is the contribution 
due to cases when the first and last terms are of similar size, much greater than the 
middle term, and smallest of all is the effect of having all three terms of the same 
magnitude. Thus one can write 

( f * (  T)YT) = 3(aYT)’ + 2 ( a Y T ) ( ( (  ala*  + a3a4)YT) - 2(aYT)’} 

+ (((ala2a3 + a4a?a6)YT) -2(ayT)3} 

+ { ( ( a 1 a 2 a 3 +  a 4 a 5 a 3 +  a 4 a 6 a 7 ) Y T )  

-[((a,a,a,+ ~4asadyT)-2(ayT)’1 

- 2( a y T ) [ (  ( a  a, + a3a4)YT) - 2(ayT)’] - 3( a”)’}. (37) 

The leading term is now 3( y +  1)-3, using (21), the second term is of order Y - ~ ,  the 
third term is of order y-6 and the last of order y-’. Similarly one can rewrite 
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( f 3 ( T Y T )  as 

( f 3 (  T ) y T )  = 6 ( ~ ” ~ ) ~  + 6(uyT){(( U , U ~  + ~ 3 ~ 4 ) ~ ~ )  - 2(~”)’} 

+ 9{((ala2u3 + a4a5a6)YT) - 2(a ”)’} 

+6{((aia2a3+ a4a5~3+a4a,a,)”) 

- [(( a1 (12(13 + a4a5a6)”)-2( a ”)’I 
- 2(ayT)[(( ala2 + ~ 3 ~ 4 ) ’ ” )  - 2(aYT)’] - 3 ( ~ ” ) ~ }  + O( Y-’). (38) 

In (38) the first term, of order results from cases when one of the six walks 
comprising f3( T) dominates (33c). The second and third terms (of order y-5  and Y - ~ )  
represent cases when two of the six terms are of similar size, much larger than the rest 
and when these two dominant walks have one or no bonds in common, respectively. 
The fourth term is the effect of having three of the terms much larger than the other 
three, with one of the three dominant walks sharing one bond with each of the other 
two dominant walks. Further contributions to (f3( T ) y T )  are of order y-’ or smaller. 

Using the rearrangements of (37) and (38) one can rewrite G 3 ( y )  as 
1 

G3( y )  = - log[d3(exp( + d 2 ( d  - l)(exp(-7s)) 
3Y 

x (({exp[-(El + E * ) /  ~ I + e x p [ - ( ~ ~ +  E ~ ) / T I ) ” ) - ~ ( ~ ~ P ( - Y ~ ) ) ~ )  

+ $ d ( d  - 1)(3d - 4 ) ( ( { e x p [ - ( ~ , + ~ , + ~ 3 ) / T ]  

+ exp[-(s4+ E ~ +  & 6 ) /  ~ ] } ~ ~ ) - 2 ( e x p ( - y ~ ) ) ~ ) + O ( y - ~ ) ] .  (39) 

3.6. The n-tree approximation for  large d 

Comparing (36) and (39), for large dimension, each of the terms in the argument of 
the logarithm on the RHS of the equations can be identified with a diagram in figure 
4, and this allows us to obtain an expression for G,(-y) valid for arbitrary n. The first 
term in (36) and (39) represents a single walk of two and three steps respectively and 
can be identified with figure 4(a). Its contribution is a product of the embedding count 
A ( a )  times the energy factor B ( a )  given in table 1. The next term in (36) and (39) 
corresponds to figure 4( b ) ,  in which two walks bifurcate and rejoin immediately 
afterwards. The contribution is again the product A ( b ) B ( b )  of table 1 .  Notice that 
an extra factor of two appears when n = 3 as the bifurcation can occur at the first or 
second step. These two diagrams constitute all the possible arrangements of walks 

Figure 4. The first six diagrams connecting points n steps apart (for n z 4). 
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Table 1 .  The embedding counts, A, and energy factors, B, of the diagrams of figure 4 for 
the diagrammatic expansion. 

Diagram Embedding count A(diagram) 

a d "  
b f ( n  - l ) d " - ' ( d  - 1 )  

d ( n - 2 ) d " - 2 ( d - 1 ) 2  

f 

C i ( n - 2 ) d " - 2 ( d  - 1 ) ( 3 d - 4 )  

Q(n - 2 ) ( n  - 3)d"-'(d - 1 ) 2  e 
f( n -3)d"-'(d - 1)( 13d2 -40d  + 3 3 )  

Diagram Energy factor B(diagram) 

linking two points two steps apart. The third term in (39) can be identified with figure 
4(c) in which two walks split and rejoin three steps later. Again its contribution is 
given by A(c)B(c) in table 1. 

Hence, to be able to evaluate G , ( y )  one need only consider all the different ways 
of linking two points n steps apart, starting by utilising as few bonds as possible and 
gradually increasing the number of bonds used by the walks to obtain higher orders 
in the expansion. For each diagram one has to determine the number of ways of 
embedding it in the lattice, A( diagram), and the corresponding energy factor, 
B(diagram). The diagrams of figure 4 have previously been used to calculate the 
high-dimension expansion of the directed bond percolation threshold (Blease 1977). 

Using table 1, G , ( y )  can be written as 
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In general a diagram will contribute at order y-p in the argument of the log in 
(40) if this diagram contains p extra bonds compared with figure 4(a) .  So to expand 
(40) to a given order in l / y = O ( l / d ) ,  one needs to consider a finite number of 
diagrams. Having obtained G,(y), the free energy per unit length then follows as 
before (e.g. (13)-( 16)) 

with 

Ym,n = 0 

and T, given by (16). 

energy distribution (21), one can show that in the low-temperature phase 
Using the expansion for G , ( y )  computed from table 1 (equation (40)) with the 

1 1  3 1 n-1  
ed e2d2 2e3d3 e3d3(  n ) F,( T)  =-+-+--- - [g( Ted) -3]+O(d-4) (42a) 

with 

g ( t ) =  t ~ 0 ~ d u ( 2 + t u ) [ ( l + e - u ) ' - l ]  

and in the high-temperature phase (to all orders in l / d )  

F,( T) = T log( %) T 2 T,. (43) 

Notice (27a), (42a) that the first correction to the tree calculation for T s T, occurs 
at order d-3, not d-2, because the first corrective diagram includes two extra bonds. 
Also, one sees from (43) that in the high-temperature phase the quenched and annealed 
free energies are equal (Imbrie and Spencer 1988, Cook and Derrida 1989b). From 
(42a) the specific heat per unit length, C, (T) ,  in the low-temperature phase can be 
shown to be 

C, ( T )  = - T (-) n-1  g"( Ted ) + O( 5) 
ed n 

The low-temperature phase is no longer frozen as it was in the mean-field limit 
(Demda and Spohn 1988). Instead one finds here a specific heat linear in temperature 
at low temperature. The transition temperature, T,, can be calculated using (41c), 
(40) and (16) to yield 

where g'(1) = 7.527 827 . . . (see (426)). 
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These results (42)-(45) were obtained using figures 4(a)  and 4(b).  One can go to 
higher orders in l / d  by including the next diagrams. For example, if one includes all 
the diagrams of figure 4, one can obtain for the ground-state energy per unit length 

1 
n 

3e+-  (3e -64) + - - - - - - - 1 1 110 1 1  
de (de)' (de)'(; : )+(del4(  3 

EGS = -+- 

n 

(Notice that (46) is only valid for n 3 3 because the embedding counts of table 1 are 
only valid for n 3 3 . )  

The calculation of the ground-state energy in powers of l / d  is technically simpler 
than that of the free energy because all the energy factors B of table 1 can be calculated 
explicitly in the limit T - 0  (table 2 )  for the exponential distribution (21). 

Table 2. The energy factors, E, of table 1 calculated at T = 0 for the exponential distribution 
(21). 

Diagram Energy factor B(diagram) at T = 0 

1 
a 

( Y + l ) "  

- ( 6 ~ + 8 )  b 
(?+ 1 ) 1 1 ( ~ + 2 ) ~  

- ( 2 0 y 2  + 5 0 ~ + 3 2 )  
C 

( Y  + 1 ) ' I (  Y + 

71y4+ 5 5 5 y 3 +  1581 y 2 +  1937y+ 864 
d 

(Y+ l ) " ( Y  +2IS(Y +3)' 

( 6 ~ + 8 ) ~  e 
( Y  + 1 ) ' I (  Y + 2 T  

- (70y3+252y'+308y + 128) 

( y + 1 ) " ( Y + 2 ) 7  
f 

All the results (41)-(46) obtained so far are l / d  expansions valid for the n-tree 
problems. As the n-tree problem is identical to the hypercubic lattice in the limit 
n -00, we expect these results (41)-(46) to be valid for the hypercubic lattice in the 
limit n -+ OC. 

So the l / d  expansion of the free energy, the specific heat and the ground-state 
energy for the hypercubic lattice are given by putting n = CO in (42), (44) and (46). 

For these results to be correct, one needs the limits n -, 03 and d -,CO to commute. 
We have not been able to prove that these two limits commute. However, in all the 
1/ d expansions presented in this paper, the coefficients are always simple rational 
functions of n which have a finite limit for n -+ 03. So there is no indication that the 
limit n +CO is singular for large d. Moreover, we shall see in section 7 that there are 
some cases which can be solved without the n-tree approximation and for which the 
exchange of these limits n + ~3 and d +CO gives the right answer. 
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4. The fluctuations of the transverse displacement 

In this section we calculate the fluctuations of the transverse displacement of the 
polymer. We shall see that one can define two types of transverse fluctuations: thermal 
and disorder fluctuations. Then the l / d  expansion, presented in the previous section, 
will be extended to include a chemical potential, enabling one to calculate the transverse 
fluctuations on a d-dimensional hypercubic lattice. 

Let us first define what is meant by transverse fluctuations. Consider the problem 
of polymers on a d-dimensional hypercubic lattice, directed along the (1,1, . . . , 1) 
direction, as described in section 3. If a polymer of length L, emanating from the 
origin, ends at the point (xl,. . . , xd), its transverse displacement is given by the 
vector R 

We want to consider the fluctuations in the quantities R, ( i  = 1, .  . . , d ) .  These can be 
of two types: thermal fluctuations, given by 

(Z - R:) (48a) 
and disorder fluctuations, given by 

(I?;) -(I?,)* = (Rf) 
since (RI) = o for symmetry reasons. 

We use the notation that ( ) denotes an average over disorder and - a configurational 
or thermal average. Often the quantity Cf=, (Rf) is considered; this scales as the length 
of the polymer, L, to an exponent 2v, i.e. 

d 

1 (Rf )=d(Rf ) -L”’ .  (49) 
, = I  

As was mentioned in section 1, little is known analytically about v as a function of 
dimension except that v = f in the mean-field limit and that v = 3 in d = 1 + 1 dimensions. 

4.1. The relation between thermal and disorder fluctuations 

Let us now derive a relation between thermal and disorder fluctuations valid for any 
tree problem. Although the notion of transverse displacement has no a priori meaning 
in a tree problem, we can identify each direction 1 6 i s d of a tree of d branches with 
one direction i on the hypercubic lattice and say that a walk on a tree has a transverse 
displacement R,  if it does L / d  + RI steps along the ith branch. 

Let us now attempt to evaluate the fluctuations (48) for the tree problem in the 
low-temperature phase. We have seen, (19) and (20), that in the low-temperature 
phase the overlaps are either 0 or 1. This implies that there are well defined valleys 
and that the thermal fluctuations inside a valley vanish. Therefore one can think of a 
landscape composed of a number of valleys. Each valley a is characterised by some 
transverse displacement R I  = c, in direction 1 and by a weight U,. Because the overlap 
between two walks inside the same valley is 1, all the walks inside the same valley CY 

have the same transverse displacement c,. Moreover, since the overlap between two 
different valleys is 0, the displacements c, and cp for two valleys are uncorrelated. 
Therefore one expects that the c, satisfy 

(CO) = 0 (cncp) = (cn)(cp) i f a # p  (50)  
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where ( ) is the disorder average. Since the only thermal fluctuations are due to relative 
weights, w,, of the valleys, one has 

- 
R: = c ~ w , .  

U 

To obtain the thermal and the disorder fluctuations, we now need to average over 
disorder. The weights w, satisfy 

c w , = 1  
a (z U:) = 1 - Tymtn. (52b)  

Equation ( 5 2 a )  expresses the fact that the weights of the valleys must add up to unity 
and (52b) is derived in appendix 1 (equation (A1.16)) .  If we consider that the c, and 
the w, are not correlated, we get 

( R , ) = O  

which give for the thermal fluctuations 

(Z)-(E:) =(ci)Tymin T G  T, (54)  

=(cZ,)(1- Tymin) T s T,. (55 )  

and for the disorder fluctuations: 

The disorder and thermal fluctuations take on similar forms, their ratio being (1 - 
Tymin)/ Tymin. The disorder fluctuations vanish at T,. This result is very similar to the 
fact that at T, the quenched and annealed free energies become identical. 

4.2. Calculation of the thermal fluctuations 

We shall now study the transverse fluctuations on the hypercubic lattice using the l / d  
expansion. This can be done by adding a chemical potential, F, to count the number 
of steps in direction 1 

where the sum runs over all walks of length L emanating from the point r and 
( R , ( w ) + L / d )  is the number of steps of walk w in direction 1 .  

The average number of steps taken in the direction marked by p, direction 1, is 
then given by 

L d  (I?,)+-=-(log Z,) 
d dEL 

and the thermal fluctuation of R ,  is given by the second derivative of (log Z,) 

(57)  
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The method of n-tree approximations and the resulting l / d  expansion can be used 
as in section 3 to calculate the free energy of problem (56 ) ,  providing that care is taken 
to include an extra factor, e+'', for each step taken in the marked direction. For 
example, the free energy per unit length of the 1-tree approximation, F,( T, p ) ,  can be 
obtained using (41) from GI(  y ) :  

where the distribution (21) has again been used. The inclusion of the chemical potential 
has changed the embedding count of figure 4(a)  from d "  to ( d  -l+ep")". The 
embedding counts for the diagrams of figure 4, obtained using the chemical potential, 
are given in table 3. Combining the new embedding counts (table 3 )  with the energy 
factors (table l) ,  as in (40), it is then possible to find G,( y )  and hence the l / d  expansion 
for the free energy, F,( T, p ) .  

From F,( T, p )  one can calculate the thermal fluctuations on the n-tree (58) by 

This formula is valid at all temperatures. 

4.3. The disorder fluctuations in the low-temperature phase 

From (54), (55) and (60) one can obtain the disorder fluctuations. 

Notice that (61) is only valid for a tree problem, since (54) and (55) only apply to 
this case. 

Table 3. The embedding counts, A, for the diagrams of figure 4 when a chemical potential, 
p, is included to count the number of steps in the marked direction. 

Diagram Embedding count 

d ( d 2  -4d + 4 +  (3d - 5 )  elryT + e 2 w y T )  

e 

+ ( 2 6 d 2 - 1 0 5 d + 1 0 7 ) e l r y T + ( ~ d - 2 2 )  e2lrYJ+e3lryJ 1 
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From (60), (61) one could obtain the complete temperature dependence of both 
the thermal and disorder fluctuations. However, as the calculations are greatly sim- 
plified at zero temperature we shall give the results in this limit only. At T=O the 
thermal fluctuations vanish, whereas the disorder fluctuations are given by 

d -  1 6 n-1  (136-6e)n-276+6e 
i =  I [ d e2d3(  n )+  ne’d4 
C ( R f ) = L  1--+- - 

+ O( d - 6 )  1. (62) 

Taking the limit n + 00 one gets a l / d  expansion for the disorder transverse fluctuation 
at zero temperature for the hypercubic lattice. As for the free energy, each term of 
the expansion has a regular n-dependence when n + CO and so it is reasonable to assume 
that the limits d + CO and n +CO can be exchanged. 

We see from (62) that the l / d  expansion does not change the value of v, which 
remains i. This would be consistent with the fact that v = i  above a certain upper 
critical dimension, d,, at which the coefficient of L (in the RHS of (62) and for n + 00) 

would diverge. The series (62) is, however, too short to make any reliable prediction 
for d,. Moreover, it could happen that the l / d  series (62) (for n = CO) has a zero radius 
of convergence, as is the case in some l / d  expansions (Fisher and Singh 1989). 

The transverse fluctuations have an interesting temperature dependence. Let us 
just discuss now their behaviour to leading order in l /d.  From (59), (60) and (61), 
one finds that the thermal fluctuations are given by, 

(3384- 376e)n + 756e - 10454+ (108/n) 
ne4d 

+ 

L(l- i )$+O($)  f o r T s T ,  

L( 1 -+) for T > T, 
(63) 

d c ( 2 ) - ( R f ) =  
, = I  

and the disorder fluctuations are given by 

(see figure 5 ) .  
The fact that we have two kinds of transverse fluctuations in this problem is 

reminiscent of the susceptibility of spin glasses for which, at low temperature, two 
susceptibilities can be defined ( DC susceptibility and AC susceptibility, in the limit of 
zero frequency). 

The inclusion of a chemical potential, as in (56), also enables one to consider the 
problem of polymers in a random medium in different geometries. For example, one 
can consider the problem in which the partition sum (2) runs over all walks with a 
fixed number of steps, N, in a given direction rather than over all walks of fixed length 
L. This problem is related to a problem considered by Dhar (1988), who showed that, 
on a d-dimensional hypercubic lattice, the ground-state energy for distribution (21) is 
given to leading order by log d ld ,  for d large. Using our l / d  expansion method based 
on the n-tree approximation, it is possible to recover this leading mean-field term and 
calculate corrections to it. 
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Figure 5. The temperature dependence of disorder (full  line) and thermal (broken line) 
transverse fluctuation, equations (63) ,  (64). 

5. The overlaps 

As mentioned in section 1 ,  the problem of directed polymers in random media has a 
close analogy with spin glasses. The mean-field spin glass (Parisi 1980a, b) and the 
mean-field polymer problem (Derrida and Spohn 1988) both have low-temperature 
phases characterised by broken replica symmetry. This is displayed in the polymer 
problem by the probability distribution of overlaps, P 2 ( q )  (see (17 )  and (18) for 
definition), being a sum of two delta functions (see appendix 1 ,  equation (A1.14) and 
section 2). The question of replica symmetry breaking in the finite-dimensional spin 
glass remains controversial and for this reason it is interesting to examine the overlaps 
for the polymer problem in finite dimension. In this section, therefore, we shall study 
the overlaps on a d-dimensional hypercubic lattice by extending the n-tree approach, 
obtaining the probability distribution of the overlap of two walks (70), (71 ) .  

The n-tree approximations to the directed polymer problem, defined in section 3, 
retain a general tree structure. Hence, if one performs the replica calculation of 
appendix 1 on the n-tree one will see that, below T,, P,(q) remains a sum of two delta 
functions with weights Tymin and 1 - Tymin. However, in the n-tree approximation 
some of the branches of the tree structure are composed of two or more paths. Consider 
what can occur when two walks pass down such a branch. The walks can both take 
the same path, giving an overlap of 1 for this section, or they can take different routes, 
giving an overlap less than 1 for this section. So, instead of having one delta function 
at q 2 = 0  and the other at q 2 =  1 ,  the latter will be shifted to a lower value of q 2 .  

To explain how one can calculate the position of the shifted delta function, let us 
consider as an example a polymer of length L in the 2-tree approximation. Here one 
has only two kinds of branch (see figure 2 ( b ) ) :  those which consist of only one path 
(type A), and so contribute 2 / L  to the overlap q2 and those which are made up of 
two paths (type B), which contribute between 1 / L  (at T = 00) and 2/ L (at T = 0) to 
q2,  depending on the temperature. To determine the distribution function of the 
overlaps, one therefore needs to know the fraction of each type of branch used by the 
walks and the contribution to the overlap from the type B branches, both as functions 
of temperature. 

As is shown in appendix 2, the typical fraction of branches used in the walk that 
are of type B and have energies .cl + .c2 and .s3 + .c4 on the constituent links is given, in 
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the low-temperature phase, by 

t d ( d  - l){exp[-(E, + E ? ) /  ~ I + e x p [ - ( ~ , +  E ~ ) /  7'11T'm1np(&l)p(&2)p(EJ)P(E4) 

x exp[-2~minG2( ~ m i n ) l  ( 6 5 )  

It now remains to calculate the contribution to the overlap, qmr of such a branch. 
where G,(y) is given by (36). 

This is simply given by 

as one has an overlap 1 if all the walks go through the same path and overlap 0 
otherwise. Combining (65) and (66),  one can conclude that P2( q )  for the 2-tree consists 
of two delta functions, one at q = 0 with weight Tymin and the other at 

Having seen how the calculation proceeds for the 2-tree, it is easy to generalise 
to the n-tree. The relative contribution to qm from each branch like figure 4(a)  is 
always 1. The relative contribution from branches like figure 4(b)  will be 

2 2 exp[-m( + E * ) /  TI + exp[ - m (  e3 + E ~ ) /  TI 
1 --+- (68) 

This is just the direct generalisation of (66): the walks have to be together for a fraction 
1 - 2/ n of the branch and can then take two paths for a fraction 2/ n of the branch. 
So for the n-tree the average overlap ( q 2 )  takes the form 

n n ~ ~ ~ P ~ - ( ~ 1 + ~ 2 ~ / 7 ' 1 + ~ ~ P ~ - ~ ~ 3 + ~ 4 ~ / 7 ' 1 ~ "  e 

where ymin is given by (40) and (41). 
Evaluating the averages, using (21) and taking the limit n +cc (again assuming the 

commutativity of limits) yields that the delta function at non-zero overlap in P 2 ( q )  is 
shifted from q2 = 1 to 

The distribution function P 2 ( q )  remains non-trivial in finite dimension in the 
low-temperature phase 

p2(q)= TYminS(q)+(l- TYmin)S(q-q2) (71) 
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where q2 is given by (70) and ymin is 

(72) 
1 

ed 
y . =ed-2+-[--+3g(Ted)- Tedg'(Ted)]+O(d-2) man 

and where g(t)  is given by (426). 

phase in finite dimension. 

two walks and one would obtain expressions very similar to (70). 

So our l / d  expansion predicts a broken replica symmetry in the low-temperature 

One could extend the calculations of this section to overlaps between more than 

6. Generalisation to other distributions 

In this section we discuss briefly the effect of using energy distributions other than (21). 
In sections 3 ,4  and 5 the high-dimension expansions were derived using the energy 

distribution (21), P ( E )  = exp( - E ) .  This choice facilitated the calculation ofthe averages 
in table 1 (see table 2). It is possible to perform the same calculations using other 
distributions, P ( E ) ,  for the disorder. However, for most choices, P ( E ) ,  it is not possible 
to express the mean-field results (26)-(28) in a simple way in powers of d, and it is 
difficult to calculate the energy factors required for the diagrammatic expansion 
(table 1). To examine the effect of using different energy distributions, we shall therefore 
limit ourselves to 

This choice allows one to study changes produced by varying the parameter a, whilst 
still keeping the calculations relatively simple. 

Let us first consider how the value of a affects the mean-field results. Using P ( E )  

given by (73) with (24)-(26), one can show that, for large d, the mean-field energy in 
the low-temperature phase and transition temperature are given by 

+ o ( ~ - ~ / o )  T s  T, 
a a 

F , (  T )  =-+- 
ed I / "  (ed l")' 

and 

T , = L + - - . f _ _  + o ( d  -31" ), 
ed "" (ed I / " ) *  

(74) 

(75) 

One can see that, in general, we have an expansion in powers of d"" rather than d. 
However, when one moves away from the mean field, by evaluating the energy factors 
of table 1 for the diagrammatic expansion, one sees that these still behave as powers 
of d, not d"". For example the energy factor corresponding to figure 4(b) is given by 

((exPr-(El+ EZ)/Tl+exPr-(E3+E'i)/ Tl)yT)-2(exP(-Y4)2 

where 
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So it still behaves as d-4. When a = 1, g,(t) = g(  t )  defined in (426). Hence, for general 
a, one has an expansion in terms of y - u  and y-I (or d - '  and d-lIa) to deal with. 
This makes calculations rather complicated and so we shall limit ourselves here to 
considering the leading behaviour of the specific heat. 

The specific heat can still be found easily for arbitrary a. To do this in the 
low-temperature phase the behaviour of the function g, ( t )  must be known for small 
t. This behaviour changes at a = f. In the range 0 < a s f, g,( t )  behaves as t4"+l  for 
small t, whereas for a k f this changes to a t 2  dependence. This produces two possible 
behaviours for the low-temperature specific heat of the n-tree: 

where 

J ( a )  = loz lox dx d y ~ ~ " - ' ( y + y ~ ) ~ " - '  log(l+e-").  (77c) 

Notice that for a 2; one obtains a linear behaviour at low temperature, whilst for 
0 < a < f one has a T4" behaviour. The low-temperature behaviour of the specific heat 
clearly depends on the nature of the disorder. 

One should not be surprised by this change of behaviour for small values of a 
because one expects from (73) that the density of excitations around the ground state 
will increase as a becomes small. 

7. Tests of the validity of the n-tree approximation method 

The basic premise of the high-dimension expansion method, which has been presented 
in the preceding sections, is that results valid for the d-dimensional hypercubic lattice 
can be obtained by expanding the n-tree approximation for high dimension and then 
taking the limit n + 00. As was discussed in the closing paragraph of section 3, this 
procedure entails exchanging the limits n +CO and d + 00. Although we have found 
that all quantities calculated so far have a finite limit for n + 00 when one uses this 
method, we have, as yet, no proof that these limits commute. In this section, therefore, 
we shall present a few problems for which the results can be tested (either against a 
solution obtained by a different approach, or against the results of simulations). First, 
we shall discuss the calculation, in high dimension, of the directed percolation thresh- 
old, p c .  Then we shall compare the results c;f the n-tree approximation with those of 
numerical simulation in dimension d = 2. Lastly we shall introduce the problem of 
directed polymers on a simplex and show that the n-tree approximation leads to the 
right answer for this problem. 

7.1. The percolation threshold for d large 

The first problem we shall consider, that of directed bond percolation, is simply the 
directed polymer problem with the random energies, E,,, chosen according to the 
distribution 

P ( & )  =ps (E)+(1  - p ) s ( &  - 1) (78) 
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with 0 6 p s  1. Again we shall look at the problem on a d-dimensional hypercubic 
lattice, directing the walks, which emanate from the origin, along the (1, 1, . . . , 1) 
direction. If the weight p exceeds the percolation threshold, p c ,  the ground-state energy 
per unit length is zero. The aim is to calculate this threshold, p c ,  as a function of 
dimension, for d large. 

Using the diagrammatic expansion method of section 3 ,  one sees, from (40) and 
(41), that the ground-state energy per unit length, E G s ,  of the n-tree approximation is 
given by 

E G S =  - G n ( Y m i n ) l r = o  (79a)  

where 

G,( y)l  T=O = - log[d"(exp( - Y E ) ) "  +;( n - 1)d '-l(d - l)(exp( - Y S ) ) " - ~  
1 

n-Y 

x ( ( m a x ( e x p [ - ( ~ ~  + E J Y I ,  exp[-(s3+ E ~ ) Y I ) ) - ~ ( ~ X P ( - ~ & ) ) ' ) + .  . .I 
(79b) 

and ymin is defined as usual by (41c). 
Using the percolation distribution (78), the averages can be performed to yield 

1 
n-Y 

G,( y)l  T = O  = - logid " [ p  + (1 - p )  +:( n - l )d"- ' (  d - l ) [p  + (1 - p )  e - y ] n - 2  

~ { 2 p * - p ~ + 4 p ( l - p ) ~ e - ~ + ( 1 - p ) ~ e - ~ ~  

- 2[p + (1 - p )  + . . .I. 
To obtain the percolation threshold, p c ,  we require that when p 2 pc  the ground-state 
energy is zero. So when p 3 p c  the value, ymin, of y that minimises G,( y )  is ymin = CO. 

It is possible to show that ymin=w as long as the argument of the logarithm in (80) 
is larger than 1 for y = CO. Therefore the percolation threshold is given by the condition 
that the argument of the logarithm is 1 for y = W .  This implies that 

which becomes, when one includes higher-order diagrams, 

A(diagram)E(diagram) = 1 
diagrams 

where the embedding counts, A, are the same as in table 1 and the factors E are now 
given for the percolation distribution (78) by table 4. As one needs here only G,( y = CO) 

Table 4. Energy factors, E ,  for the diagrams of figure 4 for the percolation distribution 
p ( e ) = p S ( F j + ( i - p j S ( E - l j  in the limit y = m .  

Diagram Percolation factor 

a P "  
b -P"+= 
c --P"+' 

f -P"+4 

d 
e 
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for the distribution (78), the energy factors B depend only on p and are related to the 
percolation probability of each diagram. The solution, p c ,  of (81) and (82) can be 
expanded in l l d ,  one gets 

P"=;i+(=) 1 n -1  ~ + ( ~ ) ; 1 " + ( 3 - 8 n + , , ) d 5 + O ( d - ' ) ) .  2n-5 1 99 5 1 (83) 

Taking the limit n --z CO, one recovers the results obtained by Blease (1977). So in this 
case the n-tree approximation method gives the right l / d  expansion. 

7.2. The percolation problem in dimension d = 2 

To further test the validity of the n-tree approximation method, we tried to calculate 
the ground-state energy per unit length, E(p) ,  for the distribution (78) in dimension 
two. A direct Monte Carlo simulation done on polymers of length lo6 leads to 
E(O.l) =0.5537*Oo.0005 and E(0.2) =0.3719*0.0005. 

By calculating the prediction, E , ( p ) ,  of the n-tree approximation of this problem, 
we have obtained the results shown in figure 6 for 1 n 6 8. When plotted against 
n - l / 3  , the results converge linearly to the results of the simulation. So here again, the 
n-tree approximation seems, in the limit n +. CO, to converge to the right answer. There 
is probably a way of relating the convergence rate to the known exponents w = f and 
v = 3, in dimension d = 1 + 1, but we were unable to find it. 

t 
0.60 1 

Monte Carlo - for p:o 1 t 
[E 5 0'50 1 

- Monte Cnrln 
*or p i c 2 

0 30 

++++ + 

+ + 
+ 

0 25 I I I I  I I X c 

8 6  4 3  2 
"-113 

Figure 6. The n-tree approximation for the ground-state energy of the percolation problem 
in dimension two. Approximations are shown for p =0.1 (+) and p =0.2 (x) .  

7.3. The simplex problem 

Another test we considered for justifying the n-tree approximation was to study a 
simplified model of directed polymers in a random medium, the simplex model (see 
figure 7). The lattice in the transverse direction is a simplex and at each step along 
the preferred direction the polymer is allowed to jump from any corner of the simplex 
to any other corner. 
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Figure 7. The simplex model. 

So in the simplex model the lattice consists of L planes with K points on each 
plane. Each point of a given plane is connected to all points of the previous and next 
plane. Therefore there are K 2  links between two consecutive planes. As always, on 
each link between two planes one chooses a random energy, E, according to a given 
distribution p ( ~ ) .  A directed walk is a walk which visits a single site in each plane, 
so the energy, E,, of a walk of L steps is the sum of the energies of the bonds visited 
by the walk. 

For this problem one can write the following recursion relation for the partition 
function: 

where Z,(i) is the partition function of the walks which reach the ith point on plane 
L. So, the calculation of the free energy is the same as finding the largest Lyapounov 
exponent of a product of K x K matrices, the elements of which are random, positive, 
independent and identically distributed. To our knowledge, this is a problem which 
has not yet been solved for a general distribution p ( ~ ) .  

We were only able to solve this problem in the particular case of zero temperature, 
large K ,  and the percolation distribution 

(85) 
For large K it is convenient to use, instead of the parameter p (in (85)), the parameter 
x related to p by 

p (  E )  = p a (  E ) + ( 1 - p ) 6 (  1 - E ) .  

p = K-".  (86) 
Let us first show that the ground-state energy per unit length, E, is given by 

E =  ( 1+ [x:l])-l - x z l  

where in (87) the square brackets denote the integer part of the argument. It is possible 
to derive this result by writing a Master equation for the probability, 
PL( E l ,  . . . , E,, . . . , EK ) that the ground-state energies of the walks of length L which 
reach the points 1, .  . . , i,. . . , K of plane L are E , ,  . . . , E,, . . . , E K .  This Master 
equation can be solved using the fact that the differences in energy ] E ,  -E,/ can only 
be 0 or 1, leading to (87) for large K .  We shall only present here a simple argument 
which leads to (87). 

It is easy to calculate the typical number of points in plane L = m that are connected 
by a path of zero energy to the plane L = 0. This typical number is K . Aslong 
as 1 + m (  1 - x )  is positive, there is a path of zero energy from plane 0 to m. So if m 
is the largest integer such that 

(88) 1 + m (  1 - x)  > 0 and 1 + ( m  + 1)( 1 - x )  < O  
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the minimum energy to go from plane 0 to plane m + 1 is 1. Therefore for large L the 
ground-state energy is L / ( m  + 1) where m satisfies (88),  and so one gets (87). 

Let us now present the n-tree approximation for this simplex problem. As in section 
3, the ground-state energy E ,  of the nth approximation will be given by 

E ,  = -min G,(  y)IT=,,. (89) 
Y 

So we only need to determine the large-K behaviour of G , ( y ) .  Clearly, from (13), 
1 
Y 

G,(y)=- log{K[K- '+( l  -KY) e-']} 

1 
Y 

--. - log( K + K e-?) 

so one has for large K 

Going to the 2-tree approximation one can show that for large K 
1 

G2( y )  -- - log( K 2-2x + 2K 2-x  e-? + K e-2y).  
2Y 

This can be understood because the average number of points which can be reached 
after two steps starting from a given point behaves like: K2-2x  for energy 0, K2-"  for 
energy 1 and K for energy 2. Minimising over y (equation (89)), one finds that for 
large K 

x s 1  
E2= (X-l)/X 1 c x c 2  (93) 1" ( 2 ~  - 3 ) / 2 ( ~  - 1) 2 s x. 

Already with this 2-tree approximation, we see an improvement toward the true 
answer (87). 

We did not find a simple way of solving the n-tree approximation for arbitrary x. 
However, for x > 2, we could generalise for arbitrary n the reasoning which led to the 
expression of G,( y ) .  For example, for odd n, one gets for x > 2 

where bm are constants independent of K. 
This leads to 

1 - l / n ( x - 2 )  for x > 2 n / ( n  - 1) 
( x - l ) / x  for 2n / (  n - 1) > x > 2 E , = {  (95)  

which converges to the exact result E = 1 (see (87 ) )  in the limit n + 03. 

Similarly for even n and x > 2, one gets 
1 - l / n ( x - 2 )  
( 2 ~  - 3 ) / 2 ( ~  - 1) 

for x > (2n - 2 ) / (  n -2) 
for (2n - 2)/(  n - 2) > x > 2. (96)  E , = {  

So with this example we see that the limits K +CO and n+w commute at least for 
x > 2 and since K plays a similar role to d for the hypercubic lattice it supports the 
idea that these commute in general. 



Directed polymers in a random medium 1549 

8. Conclusion 

In this paper we have developed a method of obtaining l / d  expansions for the problem 
of directed polymers in a random medium, using the n-tree approximation. This 
consists of building a series of tree problems (n-trees) which give the hypercubic lattice 
in the limit n + CO. For our results to be valid one needs the limits n +CO and d + 00 

to commute. At present we have no proof of this, but in several examples, which can 
be solved independently (see section 7), we found that this n-tree method gave the 
correct answer. 

We have obtained here the l / d  expansions of several quantities of interest for the 
directed polymer problem: free energy (42), specific heat (44), transition temperature 
(45), ground-state energy (46), transverse fluctuations (62) and overlaps (70). In 
contrast to the mean-field case, the low-temperature phase in finite dimension is no 
longer frozen. However, within our l / d  expansions, we find that the distribution of 
overlaps remains broad and that the transverse fluctuations remain linear in the length 
L of the polymer. This would be consistent with the idea that there exists a finite 
upper critical dimension above which the low-temperature phase has broken replica 
symmetry and the mean-field exponents. 

It would be nice to see whether our results could be recovered by another approach 
which would not require the use of the n-tree approximation. It would also be 
interesting to know whether our l / d  expansions have a finite radius of convergence 
which could be identified with a finite upper critical dimension, or have a zero radius 
of convergence as has been noted for other l / d  expansions (Fisher and Singh 1989). 
This would require pushing our diagrammatic expansion further. 

We think that the method presented here could be easily extended to other situations: 
finding the free energy as a function of the transverse displacement, site disorder rather 
than bond disorder. It should also be possible to extend it to other directed models 
and to growth models. 

Lastly, in section 7, we introduced the simplex model which is, in spirit, in the 
directed polymer case, the equivalent of the Sherrington-Kirkpatrick (1975) model of 
spin glasses. This problem can be reduced to the calculation of the Lyapounov 
exponents for products of K x K random matrices, the elements of which are random, 
positive, independent and identically distributed. It would be nice to find a way of 
expanding the free energy of this model for large K .  
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Appendix 1. Solution of the tree problem using replicas 

In this appendix we derive the solution of the problem of directed polymers in a 
random medium on a tree using replicas. We also show how one can obtain the 
overlaps, q2 ,  using this method, and derive (52b). 

For generality, consider a tree with branching ratio K .  Out of the K branches 
suppose that k, have random energies chosen according to the distribution P , ( E ) ,  k, 
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have random energies chosen according to p 2 ( & ) ,  e t c . .  . (I;, k, = K ) .  One can define 
a partition function for the problem, (2), 

2, = exp( - E w /  T )  (Al . l )  

where the sum runs over all directed walks of length L and E ,  is the total energy of 
the walk w (see (1)). 

The free energy will be calculated using the replica trick (Sherrington and Kirk- 
patrick 1975) 

H' 

(A1.2) 

(2:) can be thought of as the average of the partition function for n walks or replicas. 
We assume, following the Parisi scheme (Parisi 1980a, b) that the arrangements of the 
n walks which give the leading contribution to (ZZ) for large L are organised as follows: 

(i)  the n walks remain together initially for a length Lql;  
(ii) the walks then split into m ,  groups of n/m,  walks each and remain so for a 

(iii) the walks then split into m, groups of n/m,  walks each remaining so for a 

(iv) the walks finally separate into mM = n individual walks a length L from the 

Therefore, one has 

length U q Z -  4 , ) ;  

length L ( q J + i  - q,); 

starting point. 

qo = 0 s q, 
1 = m 0 c  m , S . .  . S  m , S . .  ,< mM = n. 

. . . s q, c . . .c qM = 1 ( A l . 3 ~ )  
(Al.3 b) 

Then for large L, (Zl) is dominated by 

(Al.4) 
where I ,  branches of class i are occupied by walks at the j th  level and therefore m, =I;( I,,. 

Taking the maximum over the I,, one gets 

(A1.5) 
To evaluate (2;) for large L one has to find the set {q,}, {m,}  which maximises the 
exponent in (A1.5). In the limit n + 0 ,  required in (A1.2), following Parisi (Parisi 
1980a, b), we invert the inequality (A1.3b) to give 

(A1.6) 1 = mo 5 m ,  3 , . , 3  m, . . .z mM = n = 0 
and take the limit M +CO by defining a function, x(q,), such that 

(A1.7) 

with q, becoming a variable continuous on the interval [0,1] and O <  x ( q )  < 1. Then 
using (A1.2) and (A1.5) one obtains 

lim p i ( & )  exp(-cx(q)/T)de) .  (A1.8) 
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As there is no explicit q dependence in (A1.8), x(q)  must be a constant. Hence one 
finds that 

where ymin is defined by 

with 

Y 

(A1.9) 

(A1 .lo) 

( A l . l l )  

(It is easy to show that yG( y )  is a convex function of y, and one can therefore show 
that (A1.lO) has a unique solution.) So one can conclude from (A1.8) and (A1.9) that 

(Al.12) 

This reduces to the result of section 2 (equations (13), (15)), derived using the travelling 
wave analogy, when one considers the case of a single distribution of disorder, P ( E )  

(i.e. k, = K and p , (  E )  = p (  E ) ) .  For clarity we shall now restrict ourselves to this problem. 
From this replica calculation one can determine the overlaps. These are defined 

in section 2 (equations (17), (18)). The probability distribution of the overlaps, q2, 
between two walks can be calculated using the identification (Parisi 1983, Mezard et 
al 1984) 

(A1.13) 

Hence, from (A1.9), one can see that for T S  T,, P2(q) is composed of two delta 
functions 

P2(q) = TyminS(q)+(l-TYmin)S(q-l) T s  T,. (A l .  14) 

Above T,, P,(q) is a single delta function at q = 0 

P2(q) = S ( q )  T 2 T,. (A1.15) 

In the low-temperature phase P2( q )  is not a single delta function, q2 is not self-averaging 
and one can conclude that the phase has broken replica symmetry. This is analogous 
to the overlaps in the low-temperature phase of the mean-field spin glass (Mezard er 
al 1987). 

One can, in addition, extract some information about the valley structure of the 
energy landscape from (A1.14). The replica symmetry breaking indicates a many-valley 
energy landscape. Assume one has a certain number of valleys, each valley a having 
a weight U,. If t w  walks fall in the same valley they have an overlap of unity and if 
they are in different valleys they have a zero overlap. Hence from (A1.14) it follows that 

U', = 1 - Tymin T s T,. (A1.16) 
a 

This is the result (526) used in section 4. 
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Appendix 2. Derivation of equation (65) 

The n-tree approximation to the d-dimensional lattice is a tree structure consisting of 
branches of a number of types. For example, the 2-tree consists of two types of 
branches, those which are formed by only one path and those which are made up of 
two paths (see figure 2(b)).  In this appendix we show how one can calculate the 
fraction of each type of branch used by a typical walk on an n-tree. This quantity is 
needed in the calculation of the overlaps in section 5. 

To see how one can evaluate these fractions, let us consider the simpler problem 
of directed walks on a tree when one has a discrete distribution of energies. Suppose 
that the probability of choosing a bond with energy E ,  is given by p,,  the E ,  forming a 
discrete set { E , }  

The free energy of the system per unit length, L, is then given by (15) 

-G( Ymin)  T s  T, 
-G(1/ T) Tz- T, 

F (  T) = 

where 

and ymin is the unique solution of 

Ymin = 0. 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

Let N ,  denote the number of branches of type i in the walks. One can then write 
the partition function ZL as 

(A2.5) 

where zL(NI)  is the partial partition function for all walks of length L containing 
exactly NI steps on branches of type 1. Our aim is to calculate the average number 
of steps on branches of type 1 

(A2.6) 

denotes a thermal average. Comparing (A2.6) and (A2.5) we see that the 

) “Zi? i NlZL(NI)exP(-E,Nl/T) 
N ,  = O  

- 
where 
average of NI can be obtained as a derivative of the free energy 

a 
aE1 

(NI)=-T-(logZL) (A2.7) 

and so, from (A2.2)-(A2.4) we see that 

(A2.8) 

where y = ymin for T s T, and y = 1 /  T for T 2 T,. 
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This idea can be extended to continuous distributions and used to calculate the 
average fraction of each type of branch used by walks on an n-tree. As the simplest 
example we shall take the 2-tree, although the extension to the n-tree is easy. From 
(32) and (36) the free energy per unit length of the 2-tree is given in the low-temperature 
phase by 

1 
2Ymin 

F 2 ( T )  = --log[d(exp(-&ymin))’+&d(d - 1) 

x ({exp[-(E, + ~ ~ ) / ~ I + e x p [ - ( & ~ +  E ~ ) /  TI}TYmin)I (A2.9) 

where ymin is defined by (32) and (36). To calculate the overlap for the 2-tree (see 
section 5 )  one needs to know the average fraction of branches used in a walk on the 
2-tree which consist of two paths with energies E , +  e2 and E ~ + E ~  on the constituent 
links. Extending (A2.8) to continuous distributions and effective bonds, one can see 
from (A2.9) that this fraction is given in the low-temperature phase by 

; d ( d  -l)(exP[-(&l+ &2)/Tl+exP[- (e ,+&4) /TI)T~-~~p(&,)p(&*)p(E, )P(eq) .  (A2.10) 
d(exp(-&ymln))2+td(d - l)({exp[-(&i + & 2 ) /  TI + ~xP[ - (E ,  + &4) /  TI} T Y m l n )  

This is the result quoted in (65). This method can easily be extended to calculate the 
average fraction of its length spent by a walk on any type of branch on the n-tree. 
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